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The liquid-solid phase transition of the Lennard-Jones �LJ� system is investigated. It is found that the
properly normalized second derivative of the interaction potential is practically constant at freezing. Using this
relation a simple equation for the freezing curve is derived. The obtained equation is used to estimate the
triple-point parameters of the LJ system. Results are compared with available numerical simulation studies.

DOI: 10.1103/PhysRevB.82.052101 PACS number�s�: 64.60.�i, 64.70.D�

Exploring phase behavior of different substances is an
outstanding physical problem with applications to both basic
and applied research. One of the numerous approaches is to
use model pair potentials which capture the essential features
of interactions in real substances. A remarkable example is
the Lennard-Jones �LJ� system—an ensemble of classical
structureless particles interacting via the potential energy of
the form

U�r� = 4����/r�12 − ��/r�6� , �1�

where r is the interparticle distance, � and � are the energy
and length scales. The long-range attractive term ��r−6� cor-
responds to the dipole-dipole attraction between neutral at-
oms at large distances while the repulsive ��r−12� term mim-
ics the steep repulsion at short distances.1 Apart from
providing a reasonable description of the interaction between
rare-gas atoms, the LJ potential is one of the most simple
models reproducing the complete thermodynamic behavior
of conventional classical fluids. Not surprisingly, the phase
diagram of the LJ model has been extensively investigated
using various theoretical and computational methods �see,
e.g., Refs. 2–10 and references therein�.

The purpose of this paper is to discuss an interesting prop-
erty of the LJ system related to its liquid-solid phase transi-
tion. Using the available data from numerical simulations we
show that the properly normalized second derivative of the
potential remains approximately constant along the liquid
boundary of the liquid-solid coexistence �freezing curve�.
This property is used to construct a simple approximate
equation for the freezing curve. The obtained equation is
then compared with those proposed earlier. As an example of
its application, we estimate the temperature and density of
the LJ system at the triple point.

We performed a systematic scan of the numerical data
related to the liquid-solid phase transition in the LJ system.
The quantity we are monitoring is the dimensionless second
derivative of the interaction potential evaluated at the mean
interparticle distance �

L = U�����2/T , �2�

where T is the particle temperature and � is related to the
particle density via ��3=1. Figure 1 summarizes the values
of L at the liquid �open symbols� and solid �solid symbols�
boundaries of the liquid-solid phase coexistence. These val-

ues are calculated from the simulation data of Refs. 4, 5, and
8–12. The values of L at melting exhibit a pronounced de-
crease with increasing density. In contrast, no systematic de-
pendence of L on density is evident at freezing. All the data
lie between L�270 and L�320. There are no well-
established standards to assess the accuracy of a particular
simulation method. In addition, finite-size and finite-cutoff
radius effects are known to be responsible for some discrep-
ancies between simulation results.10,11 So we do not elabo-
rate further on possible reasons for scatter and deviations
between different numerical results. For our present purposes
it is sufficient to note that the data points are scattered in the
relatively narrow range, L�290�10%.

We do not yet have a complete physical interpretation of
why the normalized second derivative of the LJ potential is
approximately constant along the freezing curve. We note,
however, that the LJ model is not the only example
exhibiting such a property. A similar behavior was
previously reported for a system of particles interacting via
the purely repulsive Yukawa potential at the liquid-solid

FIG. 1. The value of the normalized second derivative of the
interaction potential L=U�����2 /T as a function of normalized
density �̃= �� /��3 at freezing �open symbols� and melting �solid
symbols� of the LJ system. Symbols denote available data from
numerical simulations as indicated in the figure. The horizontal line
corresponds to L=290.
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phase transition. Namely, a decade ago Vaulina et al.13,14

proposed a freezing criterion for Yukawa systems utilizing
Lindemann-type arguments.15 Consider a one-dimensional
harmonic system with nearest-neighbors interaction between
the particles. Average-particle displacements from their equi-
librium positions are related to the particle temperature, viz.,
U������r2��T. According to Lindemann’s rule ��r2� /�2

�const at melting, which immediately leads to the condition
L=const. This argument is not convincing enough �for a
number of obvious reasons� to employ such criterion generi-
cally. Moreover, even for repulsive Yukawa systems it works
reasonably well only when the ratio of the interparticle dis-
tance to the plasma screening length is not too large. In view
of the pronounced similarities with respect to freezing in
Yukawa and inverse-power-law �IPL� systems reported
recently16 it makes sense to discuss this subject further. This
will also provide some insight regarding the obtained value
of L at freezing of the LJ system.

Figure 2 shows the available numerical data related to the
values of the parameter L at freezing for Yukawa and IPL
repulsive potentials. For the Yukawa �Debye-Hückel� poten-
tial of the form U�r�= �U0 /r�exp�−r /	�, we have
L= �U��� /T��2+2
+
2�, where U0 is the parameter regulat-
ing the strength of the interaction, 	 is the screening length,
and 
=� /	 is the screening parameter. The data shown in
Fig. 2 are taken from Refs. 17–19. For the IPL potential of
the form U�r�=��� /r�n, we have L= �U��� /T�n�n+1�,
where � and � are energy and length scales and n is the
index. The data shown in Fig. 2 are taken from
Refs. 20–23. In order to unify the data for the two different
potentials we plotted L as a function of the potential steep-
ness evaluated at the mean interparticle distance,16 viz.,
�= �d lnU�r� /d ln r�r=�. Note that in terms of the conven-

tional notation we have �=1+
 for the Yukawa potential and
�=n for the IPL potential. Figure 2 demonstrates that the
data points corresponding to different potentials are scattered
in a close vicinity of a single curve. The emerging curve has
the following properties. For weak and moderate steepness
of the potentials ��8� all the data points fall in the vicinity
L=220 with an accuracy of approximately �15% and show
little systematic dependence on �. This is the regime where
the original criterion for freezing of Yukawa systems13,14 is
applicable. For ��8 the quantity L exhibits a systematic
growth. Interestingly, the value of L�290 closely corre-
sponds to �=12 on the emerging curve �see Fig. 2� which
obviously reflects the r−12 repulsive term in the LJ potential.
This is not surprising since if L is nearly constant along the
freezing line of the LJ system, the value of the constant can
be determined from the high-temperature limit, which is gov-
erned by �r−12 repulsion. This correlates with the conven-
tional philosophy that the freezing transition in simple fluids
is mainly determined by repulsive forces.6 In addition, this
finding gives hope that freezing for LJ-type potentials �e.g.,
n-6 and exp-6 models� can be approached in a similar man-
ner. At the same time, certain value of the properly normal-
ized second derivative of the potential cannot serve as a uni-
versal criterion of freezing. An obvious example is the hard-
sphere system, where the second derivative of the potential is
undefined at all.

Now let us discuss some direct applications of the ob-
served property of the LJ system. The constancy of L at
freezing suggests a very simple approximate equation for the

FIG. 2. The values of the parameter L=U�����2 /T at freezing
of the Yukawa and IPL systems versus the potential steepness �.
Symbols denote available data from numerical simulations as indi-
cated in the figure. The horizontal solid line corresponds to
L=220. Dashed lines indicate the point L=290 at �=12 which
emerges from the analysis of the LJ system freezing data. For a
discussion see text.

FIG. 3. Portion of the phase diagram of the LJ system on the

plane of the normalized density �̃ and temperature T̃. The solid
curve on the left corresponds to the liquid boundary of the vapor-
liquid phase calculated using Eq. �4�. The solid curve on the right is
the liquid boundary of the liquid-solid phase �freezing curve� cal-
culated using Eq. �3�. Their intersection gives the following triple-

point parameters: T̃tr�0.66 and �̃tr�0.84. Symbols correspond to
the low-temperature portion of numerical data on freezing for the
LJ system. Notation is the same as in Fig. 1. The dotted and dashed
curves correspond to the fits proposed in Refs. 10 and 24,
respectively.
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freezing curve. Assuming L�290 we immediately get for
the LJ potential

T̃ �
24

290
�26�̃4 − 7�̃2� , �3�

where T̃=T /� is the reduced temperature and �̃= �� /��3 is
the reduced density. The resulting freezing curve is shown in
Fig. 3 along with numerical data and two other fits proposed
in the literature.10,24 These two fits have the same functional
form �̃= T̃1/4	 j=0

j=5ajT̃
−j, but different values of the coefficients

aj. The agreement between Eq. �3� and these fits is rather
good in the considered low-temperature regime. Note, how-
ever, that in the high-temperature regime the proposed equa-
tion for the freezing curve is expected to be much more
reliable. In order to demonstrate this we take the simulation
data point with the highest density and temperature:
T̃�274 at �̃�3.39.8 For �̃=3.39, our Eq. �3� yields
T̃�278 while the fit from Ref. 10 predicts T̃�196 and that

from Ref. 24 yields T̃�193. Both latter values are consider-
ably lower than those from simulation and Eq. �3�.

As an example of the application of the proposed equation
for the freezing curve, let us estimate the triple-point param-
eters of the LJ system. We adopt a simple empirical expres-
sion for the liquid boundary of the liquid-vapor coexistence
suggested by Guggenheim25

�

�c
= 1 +

3

4

1 −

T

Tc
� +

7

4

1 −

T

Tc
�1/3

, �4�

where �c and Tc are the density and temperature at the criti-

cal point. Using the values T̃c�1.313 and �̃c�0.304 re-

ported in Ref. 9 we get the curve shown in Fig. 3. The
intersection of the liquid-solid and vapor-liquid coexistence
curves yields the following triple-point parameters of the

LJ system: T̃tr�0.66 and �̃tr�0.84. We can compare these
numbers with the LJ triple-point parameters reported earlier,

e.g., T̃tr=0.68�0.02 and �̃tr=0.85�0.01 in Ref. 4;

T̃tr=0.687�0.004 and �̃tr=0.850 in Ref. 8; T̃tr=0.694 in

Ref. 10; T̃tr=0.661 and �̃tr=0.864 in Ref. 12; and

T̃tr=0.67�0.01 and �̃tr=0.818�0.004 in Ref. 26. The agree-
ment is remarkably good taking into account the simplifica-
tions involved in the present estimate.

To summarize, we reported an interesting property of the
LJ system. The properly normalized second derivative of the
interaction potential remains practically constant at freezing.
The value of the constant was shown to be close to that of
the purely repulsive �r−12 potential at freezing. This obser-
vation was used to construct a simple equation for the freez-
ing curve, which yields adequate results in the entire
temperature-density range investigated so far. Using the ob-
tained equation we estimated the triple-point parameters of
the LJ system. These agree well with those reported earlier.
Finally, we suggest that the approach discussed in this work
in the context of the LJ system can be expected to work for
the entire family of LJ-type potentials. This, however, re-
quires further detailed investigation.
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